Analytical formula for output phase of symmetrically excited one-to-N multimode interference coupler

Amir Hosseini, David Kwong and Ray T. Chen
Microelectronic Research Center, Department of Electrical and Computer Engineering, University of Texas, Austin, TX 78758 USA (e-mail: ahoss@ece.utexas.edu; chen@ece.utexas.edu)

ABSTRACT

We derive analytical formulations for the output phase profile of symmetrically excited one-to-N multimode interference couplers. We show that the output phase increases quadratically from the middle of the MMI waveguide, which needs to be taken into account for phase-dependent applications such as optical phased arrays.

Keywords: Multimode Interference Coupler, Integrated Optics

1. INTRODUCTION

Multimode interference (MMI) based devices have been widely used in photonic integrated circuits (PICs) as compact size passive components power splitters [1], [2], 90° hybrid couplers [3] and mode-matching stages [4]. MMI-based active devices such as optical switches [5], [6] and phased array multiplexers [7] have been theoretically studied and experimentally demonstrated. The interest in MMI based devices stems from properties such as compact size, low power imbalance, stable power splitting ratio, low cross talk, large optical bandwidth, and high tolerance to fabrication process [2], [8], which render such devices suitable for integration in PICs with complex passive networks including power splitters and signal routing. Compared to Y-branches, MMI splitters are smaller and benefit from scalability as the number of the output ports grows.

Several studies investigated the quality of the output signals in MMI couplers based on power uniformity [3], [9] and image resolution [10]. Also, several techniques have been proposed to improve the signal quality, such as tapered multimode waveguide [11], graded-index waveguide [12] and deeply etched air trenches at the boundary of the multimode section [2]. In addition to power splitter, MMI coupler can be used in more complex photonic components where the phase of the output signal is also important, such as 90° hybrid couplers [3].

In addition to power splitter, MMI coupler can be used in more complex photonic components where the phase of the output signal is also important, such as 90° hybrid couplers [3] and in high-speed phased array optical beam steering [13]. Despite the effort in investigating the power profile at the MMI output ports, there have been no studies on the output phase profile. In many applications,
the knowledge of the phase profile is important. The phase differences of MMI output ports can severely distort the performance of compact optoelectronic devices that employ a multimode waveguide region to generate several channels with linear phase profiles such as optical spatial quantized analog-to-digital converters [14] and GHz Optical beam steerers [15]. The knowledge of the MMI output phase profile will provide a means to apply appropriate phase shifts in order to attain the desired phase profile.

Fig. 1, Schematics of 1 × N symmetric MMI coupler, (a) even N, (b) odd N.

Symmetrically excited one-to-N MMI couplers are the most common power splitters in photonic circuitries, where the number of output ports has been reported from 2 to as large as 64 [16]. In this paper, we derive an analytical formula for the symmetrically excited MMI output phase profile, and
compare the results with beam propagation simulations. Additionally, we report a complete
description of the output field profile at the symmetric N-fold imaging length in ideal MMI couplers.
Our analysis is most accurate for high index contrast waveguides. However, image enhancing
techniques, such as etched air trenches introduced to define the edges of the MMI coupler [2], make
the presented analysis applicable to low index contrast waveguides, such as polymer based
structures. Such etched air trenches reduce the lateral penetration depth into the cladding so that the
effective width of all the guided modes is approximately the same as the actual width of the MMI
coupler, and therefore improve the output power uniformity.

2. MULTIMODE INTERFERENCE COUPLERS

Self-imaging is a phenomenon in multimode waveguides by which an input field profile is
reproduced in single or multiple images at periodic intervals along the propagation direction of the
guide [3]. This effect has been exploited in different MMI based structures. Several MMI coupler
structures have been theoretically studied and experimentally fabricated [1]–[3], [9], [10], [16]. In
Fig. 1 the multimode waveguide section consists of a W-wide core of refractive index nc, embedded
in between cladding layers of n_0. In the case of 3D waveguides, an equivalent 2D representation can
be made by techniques such as the effective index method or the spectral index method [3]. The
multimode section can support maximum M + 1 number of modes. For each mode \(p \), the dispersion
relation is given as

\[
\beta_p^2 + \kappa_{yp}^2 = \left(\frac{2\pi n_c}{\lambda_0} \right)^2,
\]

where, \(\beta_p \) is the propagation constant of the \(p \)th mode, \(\lambda_0 \) is a free-space wavelength. \(\kappa_{yp} \) is the
lateral wavenumber of the \(p \)th mode, given as \(\kappa_{yp} = (p+1)\pi/W_c \), where \(W_c \) is the effective width for
mode \(m \) including the penetration depth due to the Goose-Hahnchen shift [2]. The propagation
constant \(\beta_p \) can be approximated as

\[
\beta_p \approx \beta_0 - \frac{p(p-2)}{3L_\pi},
\]

where, \(L_\pi = \pi/(\beta_0-\beta_1) \approx 4n_cW_c^2/3\lambda_0 \). Given the orthogonality of the propagating modes, any input field
profile at \(z = 0 \), can be written as a linear combination of the propagating modes,
\[\Phi(y, z = 0) = \sum_{p=0}^{M} c_p \phi_p(y), \]

(13)

where \(c_p \) is the excitation coefficient of the \(p \)-th mode by the given input field profile, calculated as the overlap integrals of the \(p \)-th mode and the input field profile [3]. Each excited mode accumulates phase shift according to its propagation constants and therefore, the field profile at any \(z = L \) can be represented by

\[
\exp(-j \beta_0 L) \sum_{p=0}^{M} c_p \phi_p(y) \exp[-j(\beta_p - \beta_0)L] \approx
\exp(-j \beta_0 L) \sum_{p=0}^{M} c_p \phi_p(y) \exp \left(j \frac{p(p + 2)\pi}{3L_x} \right).
\]

(14)

At \(L = 3rL_x \) with \(r = 1, 2, \ldots, \) all the exponential terms in (4) becomes in-phase with one another and a single image of the input field profile is formed. Generally, an \(N \)-fold image of the input field profile is formed at \(L = 3L_x/N \). In the case of symmetric excitation, \(\Phi(y, Z = 0) = \Phi(y, Z = 0) \), only the even modes \(p = 2m \), for integer \(m \), are excited. This type of excitation can be realized by a symmetric input filed profile fed to the center of the multimode waveguide Fig. 1. This has been known to result in short 1xN couplers, where \(N \) is the number of output ports [3]. The required length for such a coupler is given as which is four times shorter than the general case. \(L = 3rL_x/4N, r \) integer.

In the case of 1xN couplers, the output power is ideally designed to be equally divided among the output ports and therefore, the field amplitude at the output ports is \(1/\sqrt{N} \). In reality, however, the approximation in (2) becomes inaccurate especially for the higher order modes in low refractive index contrast waveguides. In these cases, the Goose-Hahnchen effect becomes mode dependent and the accumulated phase shift of each mode is different from the ideal case by an error of

\[
\Delta \phi_p \approx \frac{\lambda_0}{2Nn_c^2W_{eff}} \left[1/8 - \frac{\lambda_0n_c^2}{6\pi W_w(n_c^2 - n_0^2)^{1/2}} \right].
\]

(15)

for the \(N \)-fold imaging length \(L = 3rL_x/N \) [9]. The existence of these modal phase errors is inherent in the dispersion law of the dielectric slab waveguides. Additional phase errors happen when the observation plane is shifted away from the paraxial plane [10]. In the case of the symmetric excitation, the accumulated phase error at the \(N \)-fold imaging length is \(\Delta \psi_p/4. \) This error would result in non-uniformity in the output power distribution. The phase profile of the output ports and the effect of non-ideal effects on the output phase profile have not been investigated. In the next
section we derive a closed form formula for the output field profile.

3. SYMMETRIC MMI COUPLER PHASE PROFILE

Consider the 1xN MMI coupler shown in Fig. 1. In order to analyze the output properties, such as image resolution, contrast, etc, Ulrich and Kamiya approximated the multimode waveguide propagating modes field profiles with cosine functions,

\[\phi_p(y) = \cos(\kappa_{yp} y), \]

which allowed them to apply the Fourier transform properties to the field presentation in [10]. In this paper we adopt the same technique to take the position (in the y-direction) of the images formed into account.

Consider one of the N images of the input field at an N-fold imaging length and shifted in the y-direction to \(y = y_q \). Based on (3), this image can be presented as \(B\Phi(y-y_q, z = 0) \)

\[B\Phi(y-y_p, z = 0) = B \sum_{p=0}^{M} c_p \phi_p(y-y_q), \] where \(B = \frac{\exp(j\theta_q)}{\sqrt{N}} \), assuming uniform power distribution.

As shown in Figs. 1(a) and (b) for the N images formed at the output ports the lateral shifts of the position with respect to the input image are \(y_q = \pm \frac{W_e}{2N}, \pm \frac{3W_e}{2N}, \ldots, \pm \frac{(N-1)W_e}{2N} \) for even N, and \(y_q = 0, \pm \frac{W_e}{N}, \pm \frac{2W_e}{N}, \pm \frac{(N-1)W_e}{2N} \) for odd N. Therefore, at an N-fold imaging length (\(L_0 \)) the field profile \(\Phi(y,L_0) \) is

\[\frac{1}{\sqrt{N}} \sum_{q=0}^{N/2-1} \exp(j\theta_q) \sum_{p=0}^{M} c_p \left(\cos \left[\kappa_{yp} \left(y - \frac{(2q+1)W_e}{2N} \right) \right] + \cos \left[\kappa_{yp} \left(y + \frac{(2q+1)W_e}{2N} \right) \right] \right), \]

(17)

for even N, and

\[\frac{1}{\sqrt{N}} \exp(j\theta_q) + \frac{1}{\sqrt{N}} \sum_{q=1}^{(N-1)/2} \exp(j\theta_q) \times \]

\[\sum_{p=0}^{M} c_p \left(\cos \left[\kappa_{yp} \left(y - \frac{qW_e}{N} \right) \right] + \cos \left[\kappa_{yp} \left(y + \frac{qW_e}{N} \right) \right] \right), \]

(18)

for odd N. In (7) and (8), the symmetry of the structure have been taken into account by letting \(\theta_{-q} = \theta_q \). We can simplify (7) and (8) using the trigonometric identity \(\cos(a+b) = \cos(a)\cos(b)-\sin(a)\sin(b) \).

We also note that when the multimode waveguide is symmetrically excited, only the even modes of
the multimode region are excited, and therefore $c_p = 0$ for odd p values. We can rewrite (7) and (8) with $c_p = c_{2m}$

$$\frac{2}{\sqrt{N}} \sum_{q=0}^{N/2-1} \exp(j\theta_q) \times \sum_{m=0}^{M/2} c_{2m} \cos(\kappa_{2m}y) \cos\left(\frac{(2m+1)(2q+1)}{2N} \pi\right),$$

for even N, and

$$\frac{1}{\sqrt{N}} \exp(j\theta_0) + \frac{2}{\sqrt{N}} \sum_{q=1}^{(N-1)/2} \exp(j\theta_q) \times \sum_{m=0}^{M/2} c_{2m} \cos(\kappa_{2m}y) \cos\left(\frac{(2m+1)q}{N} \pi\right),$$

for odd N. We can also rewrite the field profile from (4) at a symmetric N-fold imaging length, $L_0 = 3L\pi/4N$, considering $p = 2m$

$$\Phi(y, L_0) = \sum_{m=0}^{M/2} c_{2m} \phi_{2m}(y) \exp(j \frac{m(m+1)}{N} \pi).$$

Note that we have dropped the common factor $\exp(-j\beta_0L_0)$, for simplicity, but we will add it back later. Using the reciprocity law for quadratic Gauss sums we can show that in the case of even N

$$\sum_{m=0}^{M/2} C_{2m} \phi_{2m}(y) \exp\left(j \frac{m(m+1)}{N} \pi\right) =$$

$$2 \exp\left(j \frac{N-2}{4N} \pi\right) \sum_{m=0}^{M/2} C_{2m} \phi_{2m}(y) \times \sum_{q=0}^{N/2-1} \exp\left(-j \frac{q(q+1)}{N} \pi\right) \cos\left(\frac{(2m+1)(2q+1)}{2N} \pi\right),$$

Comparing (12) and (9), one can conclude that

$$\exp(j\theta_q) = \exp(j \frac{N-2}{4N} \pi) \times \exp(-j \frac{q(q+1)}{N} \pi).$$

Taking in the common factor, $\exp(-j\beta_0L_0)$, into account,

$$\theta_q = -\beta_0L_0 + \frac{N-2-4q(q+1)}{4N} \pi,$$

for $q = 0, 1, ..., N/2-1$, where q is assigned to the output ports as shown in Fig. 1(a). Note that the
phase profile is symmetric with respect to the line $y = 0$. We can identify that the phase profile has a propagation accumulated phase term, a constant term depending on the number of output channels, which is the same for all the channels, and a term that quadratically depends on the channel number (starting from the middle of the waveguide). In the case of odd N, one can show

$$\sum_{m=0}^{M/2} C_{2m} \phi_{2m}(y) \exp \left(j \frac{m(m+1)}{N} \pi \right) =$$

$$\exp\left(j \frac{N-1}{4N} \pi \right) \sum_{m=0}^{M/2} C_{2m} \phi_{2m}(y) \times$$

$$\left(1 + 2 \sum_{q=3}^{(N-1)/2} \exp\left(-j \frac{q^2}{N} \pi \right) \cos \left(\frac{(2m+1)q \pi}{N} \right) \right).$$

(25)

Similarly, in the case of odd N, comparing (15) and (10) one can conclude that

$$\theta_q = -\beta_0 L_0 + \frac{N - 1 - 4q^2}{4N} \pi,$$

(26)

for $q = 0, 1, \ldots (N - 1)/2$, where the q values are assigned to the output ports as shown in Fig. 1(b). Again, the phase profile is symmetric with respect to the line $y = 0$. Although the discussion in this paper is based on dielectric waveguides, similar results are expected in the case of self-imaging in other waveguiding structures, such as multimode photonic crystal waveguides, which can be realized by removing several periods in the transverse direction [17].

Appendix I: Proof for even N

In the case of $N = 2K$ and $K \in \mathbb{Z}$, we need to show

$$\sum_{m=0}^{M/2} C_{2m} \phi_{2m}(y) \exp \left(j \frac{m(m+1)}{N} \pi \right) =$$

$$\frac{2 \exp\left(j \frac{N-2}{4N} \pi \right)}{\sqrt{N}} \sum_{m=0}^{M/2} C_{2m} \phi_{2m}(y) \times \sum_{q=0}^{N/2-1} \exp\left(-j \frac{q(q+1)}{N} \pi \right) \cos \left(\frac{(2m+1)(2q+1) \pi}{2N} \right).$$

(17)

Note that y in (17) is an independent variable. Therefore, in order to prove (17), we need to show that for every m, the coefficients of $C_{2m} \phi_{2m}(y)$ on the left and right sides of (17) are equal. Thus, we need to prove
\[
\exp \left[j \frac{m(m+1)}{N} \pi \right] = \frac{2 \exp(j \frac{N-2}{4N} \pi)}{\sqrt{N}} \times \sum_{q=0}^{N/4 \mathcal{Z}} \exp \left(-j \frac{q(q+1)}{N} \pi \right) \cos \left(\frac{(2m+1)(2q+1)\pi}{2N} \right),
\]

which simplifies to

\[
2 \exp(j \frac{N-2}{4N} \pi) \sum_{q=0}^{K-1} \exp \left(-j \frac{2q(q+1) + 2m(m+1) - (2m+1)(2q+1)}{2K} \pi \right) \cos \left(\frac{(2m+1)(2q+1)\pi}{4K} \right) = 1
\]

(19)

Let us simplify the left hand side of (19):

\[
2 \exp(j \frac{K-1}{4K} \pi) \sum_{q=0}^{K-1} \exp \left(-j \frac{2q(q+1) + 2m(m+1) - (2m+1)(2q+1)}{4K} \pi \right)
\]

\[
\exp \left(-j \frac{2q(q+1) + 2m(m+1) + (2m+1)(2q+1)}{4K} \pi \right) \right\} = 1
\]

(20)

which further simplifies to

\[
2 \exp(j \frac{1}{4} \pi) \sum_{q=0}^{K-1} \left\{ \exp \left(-j \frac{(m-q)^2}{2K} \pi \right) + \exp \left(-j \frac{(m+q+1)^2}{2K} \pi \right) \right\}.
\]

(21)

Now note that

\[
\sum_{q=0}^{K-1} \left\{ \exp \left(-j \frac{(m-q)^2}{2K} \pi \right) + \exp \left(-j \frac{(m+q+1)^2}{2K} \pi \right) \right\} = \sum_{q=m+1-K}^{m+K} \exp \left(-j \frac{q^2}{2K} \pi \right).
\]

(22)

Consider a set of integer numbers \{m-K+1, m-K+2, ..., m+K\}. Regardless of m, this set imodules 2K is exactly the same as \{0, 1, ..., 2K-1\}mod(2K). it can be easily shown that if \(a \equiv b \mod(2K) \), then \(a^2 \equiv b^2 \mod(4K) \), hence \(\exp(-j2\pi a^2 / 4K) = \exp(-j2\pi b^2 / 4K) \) or \(\exp(-j2\pi a^2 / 4K) = \exp(-j2\pi b^2 / K) \). Therefore, the expression in (22) is independent of m as follows,

\[
\sum_{q=m+1-K}^{m+K} \exp \left(-j \frac{q^2}{2K} \pi \right) = \sum_{q=0}^{2K-1} \exp \left(-j \frac{q^2}{2K} \pi \right).
\]

(23)

From the abovementioned statements we can also conclude

\[
\sum_{q=0}^{2K-1} \exp \left(-j \frac{q^2}{2K} \pi \right) = \sum_{q=1}^{2K} \exp \left(-j \frac{q^2}{2K} \pi \right) = \sum_{q=2K+1}^{4K} \exp \left(-j \frac{q^2}{2K} \pi \right),
\]

(24)

which leads to
\[
\sum_{q=m+1-K}^{m+K} \exp\left(-j \frac{q^2}{2K} \pi \right) = \frac{1}{2} \sum_{q=1}^{4K} \exp\left(-j \frac{q^2}{2K} \pi \right).
\] (25)

Using the reciprocity law for quadratic Gauss sums defined as

\[
G(N; M) = \sum_{q=1}^{M} \exp(j 2\pi N q^2 / M),
\] (26)

we can write the results as follows

\[
G(N = 1; M) = \sum_{q=1}^{M} \exp(j 2\pi q^2 / M) = \frac{1}{2} \sqrt{M} (1 + j)[1 + \exp(-j \pi M / 2)],
\] (27)

which is equal to \((1 + j)\sqrt{M}\) if \(M \equiv 0 \mod(4)\). Comparing (25) and (27) we can conclude that

\[
\sum_{q=m+1-K}^{m+K} \exp\left(-j \frac{q^2}{2K} \pi \right) = \frac{1}{2} G^* (1,4K) =
\]

\[
\frac{1}{2} (1 - j)\sqrt{4K} = (1 - j)\sqrt{K} = \exp(-j \frac{\pi}{4})\sqrt{2K},
\] (28)

where, \(G^*\) is the complex conjugate of \(G\). Consider (19), (22), (23) and (28), we can write

\[
2 \exp(j \frac{N-2}{4N} \pi) \sum_{q=0}^{K-1} \exp\left(-j \frac{q(q+1) + m(m+1)}{2K} \pi \right) \cos\left(\frac{(2m+1)(2q+1)\pi}{4K}\right) =
\]

\[
e^{j\pi/4} \sum_{q=0}^{K-1} \exp\left(-j \frac{q^2}{2K} \pi \right) = e^{j\pi/4} \sqrt{2K} \times \exp(-j \frac{\pi}{4})\sqrt{2K} = 1.
\]

Therefore, we have proved (18) and consequently (17).

Appendix II: Proof for odd \(N\)

In the case of \(N = 2K + 1\) and \(K \in \mathbb{Z}\), we need to show

\[
\sum_{m=0}^{N/2} C_{2m} \phi_{2m}(y) \exp\left[j \frac{m(m+1)}{N} \pi \right] =
\]

\[
\exp(j \frac{N-1}{4N} \pi) \sum_{m=0}^{N/2} C_{2m} \phi_{2m}(y) \times \left[1 + 2 \sum_{q=1}^{(N-1)/2} \exp\left(-j \frac{q^2}{N} \pi \right) \cos\left(\frac{(2m+1)q\pi}{N}\right) \right],
\] (29)
Similarly to the case of even N, since y in (17) is an independent variable, in order to prove (29), we need to show that for every m, the coefficients of $C_{2m, \varphi_m}(y)$ on the left and right sides of (29) are equal. Thus, we need to prove

$$\exp \left[j \frac{m(m+1)}{N} \pi \right] =$$

$$\exp(j \frac{N-1}{4N} \pi) \left(1 + 2 \sum_{q=1}^{(N-1)/2} \exp(-j \frac{q^2}{N} \pi) \cos \left(\frac{(2m+1)q \pi}{N} \right) \right),$$

or equivalently,

$$\exp(j \frac{2K}{4(2K+1)} \pi) \left\{ \exp \left[-j \frac{m(m+1)}{2K+1} \pi \right] + \right. \right.$$

$$\left. 2 \sum_{q=1}^{K} \exp \left(-j \frac{q^2 + m(m+1)}{2K+1} \pi \right) \cos \left(\frac{(2m+1)q \pi}{2K+1} \right) \right\} = 1,$$

Consider the left-side of (31)

$$\exp(j \frac{2K}{4(2K+1)} \pi) \left\{ \exp \left[-j \frac{m(m+1)}{2K+1} \pi \right] + \right. \right.$$

$$\left. \sum_{q=1}^{K} \exp \left(-j \frac{q^2 + m(m+1) - (2m+1)q \pi}{2K+1} \right) + \exp \left(-j \frac{q^2 + m(m+1) + (2m+1)q \pi}{2K+1} \right) \right\},$$

which simplifies to

$$\exp(j \frac{2K}{4(2K+1)} \pi) \left\{ \exp \left[-j \frac{m(m+1)}{2K+1} \pi \right] + \right. \right.$$

$$\left. \sum_{q=1}^{K} \exp \left(-j \frac{(q-m-1/2)^2 - 1/4 \pi}{2K+1} \right) + \exp \left(-j \frac{(q+m+1/2)^2 - 1/4 \pi}{2K+1} \right) \right\},$$

and further simplifies to

$$\exp(j \frac{1}{4} \pi) \left\{ \exp \left[-j \frac{(m+1/2)^2}{2K+1} \pi \right] + \right. \right.$$

$$\left. \sum_{q=1}^{K} \exp \left(-j \frac{(q-m-1/2)^2}{2K+1} \pi \right) + \exp \left(-j \frac{(q+m+1/2)^2}{2K+1} \pi \right) \right\}.$$

Note that
\[
\exp \left[-j \left(\frac{(m+1/2)^2 \pi}{2K+1} \right) \right] + \sum_{q=1}^{K} \exp \left[-j \left(\frac{(q-1/2)^2 \pi}{2K+1} \right) \right] = \sum_{q=-K}^{K} \exp \left[-j \left(\frac{(q+1/2)^2 \pi}{2K+1} \right) \right].
\]

(35)

Consider \(q = n(2K+1) + r \), \(-K \leq q \leq K\) and \(0 \leq r \leq 2K\). Then, \(\{q + m\} \mod (2K+1) \equiv \{q\} \mod (2K+1) \) with the same set of residuals \(\{r\}\), for every integer \(m\). In addition, \(\{2q + 2m + 1\} \mod (2K+1) \) is the set of \(\{2r+1\}\). Therefore, \(\forall m \in \mathbb{Z} \) and \(\forall q \in \{q\}\), \(\exists r \in \{q\}\) so that \(2m+2q+1=2p(2K+1)+(2r+1)\) for some integer \(p\). Thus, we can write

\[
(2m+2q+1)^2 = 4p(2K+1)[p(2K+1)+(2r+1)] + (2r+1)^2 \tag{36}
\]

Also not that \(p[p(2K+1)+(2r+1)]\) is always even. Thus, \((2m+2q+1)^2 = 8s(2K+1)+(2r+1)^2\) for some integer \(s\) and

\[
\sum_{q=1}^{K} \exp \left[-j \left(\frac{(q+1/2)^2 \pi}{2K+1} \right) \right] = \sum_{r=0}^{2K} \exp \left[-j \left(\frac{(r+1)^2 \pi}{4(2K+1)} \right) \right].
\]

(37)

Now consider the Gauss Quadratic Reciprocity law \(\forall a,b,c,z \in \mathbb{Z} \), \(ac \neq 0\) and even \(ac + b\)

\[
\sum_{z=0}^{\lfloor \frac{\sqrt{c-a}}{\sqrt{a}} \rfloor} \exp \left(j \pi \frac{az^2 + bz}{c} \right) = \sqrt{\left| \frac{c}{a} \right|} \exp \left(j \pi \frac{ac}{4ac} \right) \sum_{z=0}^{\lfloor \frac{\sqrt{c-a}}{\sqrt{a}} \rfloor} \exp \left(j \pi \frac{cz^2 + bz}{a} \right). \tag{38}
\]

Let \(a,b = 1, z = r\) and \(c = 2K+1\), we can say \(ac + b = 2K + 2\) is always even, therefore, we can use the Gauss Quadratic Reciprocity law as follows

\[
\exp \left[-j \pi \frac{r^2 + r}{2K+1} \pi \right] = \sqrt{2K+1} \exp \left(-j \pi \frac{2K}{4(2K+1)} \right) = \sqrt{2K+1} \exp \left(-j \frac{\pi}{4} \right).
\]

(39)

From (34) and (39) we conclude

\[
\exp \left(j \frac{1}{4} \pi \right) \frac{1}{\sqrt{2K+1}} \exp \left[-j \left(\frac{(m+1/2)^2 \pi}{2K+1} \right) \right] + \sum_{q=1}^{K} \exp \left[-j \left(\frac{(q-1/2)^2 \pi}{2K+1} \right) \right] + \exp \left[-j \left(\frac{(q+1/2)^2 \pi}{2K+1} \right) \right] = \exp \left(j \frac{1}{4} \pi \right) \frac{1}{\sqrt{2K+1}} \times \sqrt{2K+1} \exp \left(-j \frac{\pi}{4} \right) = 1
\]

(40)

Therefore, we have proved (30) and consequently (29).
REFERENCES