The following information reflects the status of your manuscript and history of actions taken. When action is required from you (e.g., resubmission, author revisions), the item will be highlighted, and a link to the appropriate process screen will be provided.

Manuscript ID: 157411

Title: Silicon Nano-Membrane based Photonic Crystal Microcavities for High Sensitivity Bio-Sensing

Corresponding Author: Swapnajit Chakravarty, Omega Optics, Inc

Secondary Authors:
1. Wei-Cheng Lai, University of Texas, Austin
2. Yi Zou, University of Texas, Austin
3. Ray Chen, University of Texas, Austin

Manuscript Status:
- On 02/14/2012 the final decision was made on your manuscript with a result of Manuscript Accepted.
- The manuscript passed through content revision on 02/08/2012.
- Rereview for your manuscript was completed on 01/30/2012.
- On 12/23/2011 the final decision was made on your manuscript with a result of Repeat Review.
- Revisions were submitted on 12/22/2011.
- Preproduction review for your manuscript was completed on 12/08/2011.
- On 12/08/2011 the first decision was made on your manuscript with a result of Manuscript Accepted with Mandatory Revisions.
- Peer review for your manuscript was completed on 12/08/2011.
- An editor was assigned to your manuscript on 11/01/2011.
- Quality check for your manuscript was completed on 10/31/2011.
- Your manuscript was submitted on 10/30/2011.

Assigned Issue: Vol. 37, No. 8 (04/15/2012)

Copyright Transfer:
- Agree

Color Printing Authorization:
- Agree

Figures to Print in Color:
- Color Pieces (#):

Open Access:

© Copyright 2012 Optical Society of America
All Rights Reserved | Privacy Statement | Terms of Use
In recent years, integrated optical devices are being developed to function as microarrays for chemical and biological assays. Platforms based on ring resonators [1], wire waveguides [2] and surface plasmon resonance (SPR) [3] have been investigated. The detection principle in all instances is based on the specific binding of the biomolecule of interest to its specific conjugate biomolecule receptor bound to the optical device substrate, which causes a change in the refractive index and hence a change in the transduced signal. While it is possible to design sensors with ultra-small mode volumes [4], current bio-molecule patterning technologies limit the minimum spacing between resonators in an array when each sensor is coated with a unique biomolecule receptor. Inkjet patterning techniques [5] enable denser integration than methods using microfluidic channels where laminar flow considerations make miniaturization challenging below 100µm for effective biomolecule patterning [2].

Photonic crystals (PCs) are a relatively new platform that have generated significant interest over the last decade due to their ability to confine light to ultra-small mode volumes and their high sensitivity to changes in refractive index of the ambient that promises the potential for creating high-density microarrays. Various designs of PC microcavities have been proposed for chemical [6] and bio-sensing [7] using microcavities with small mode volumes. Radiation losses, however, increase with increasing refractive index of the ambient that significantly reduces the resonance quality (Q) factor due to reduced out-of-plane confinement in two-dimensional PCs. Thus, although high Q-factors have been demonstrated in freely suspended PC membranes in air [4], which promises the potential for highly sensitive sensing in air, when such membranes are suspended in phosphate buffered saline (PBS) (refractive index \(n = 1.334 \)), a typical ambient for bio-molecules, Q-factors deteriorate by orders of magnitude. Hence researchers have attempted optimum designs balancing two contradictory requirements: increasing the Q-factor of the resonance versus increasing the wavelength shift due to change in refractive index. In passive silicon PC nanostructures, the transmission drop resonance architecture has been used predominantly with hexagonal [7] and linear PC microcavity coupled to a W1 photonic crystal waveguide (PCW). The best results have been achieved in freely suspended membranes, [8] which are fragile structures. In this paper, we present high-Q PC microcavities in silicon nano-membrane on insulator structures for bio-sensing microarray applications. Since radiation losses are inversely proportional to the cavity size and due to fundamental biomolecule patterning limitations in microarrays, we investigate methods to increase device sensitivity by increasing the size of the PC microcavity while still retaining the compactness of PC structures.

The PCW is a hexagonal structure with a W1 line defect waveguide with uniform lattice constant \(a=400\text{nm} \), where W1 denotes that width of the PCW is \(3a \). Silicon slab thickness and air hole diameter are \(h=0.58a \) and \(d=0.54a \) as shown in Fig. 1(a). A microscope image of a patterned device with an array of two PC microcavities is shown in Fig. 1(b). Detailed characteristics of the arrayed device are under evaluation and will be covered in another publication. In this paper, we consider single PC microcavity sensors only. In Fig. 1(b), we note that by ink-jet patterning, the minimum dispersed spot size of biomolecules is \(\sim 35\mu m \). The ink-jet dispersed spot size determines the minimum spacing between adjacent sensors, and is different from the device surface area that can be functionalized by combining lithographic patterning with ink-jet printing [5]. PC microcavities of gradually increasing length were
thus investigated to characterize resonance linewidths and sensitivity.
Linear PC microcavities L_n where n presents the number of missing holes along Γ–K direction, are fabricated two periods away from the PCW. The edge air holes are shifted in the Γ–K direction by 0.15a [4]. Fig. 1(c) shows a band structure obtained by three-dimensional plane-wave expansion simulations of the W1 PCW, considering water ($n=1.33$) as the ambient. The normalized resonance frequencies of different PC microcavities of increasing lengths obtained by 3D finite-difference time domain simulations are indicated by dotted lines in Fig. 1(b). The resonant mode profiles are shown in the insets.

![Fig. 1.](image)

Light is guided in and out of the PCW by ridge waveguides with PC group index taper to enable high coupling efficiency into the slow light guided mode [9]. Devices were fabricated on silicon-on-insulator (SOI) wafer using established methods [9]. The bottom cladding of silicon dioxide ($n=1.46$) is kept intact to enable robust devices with high yield. Devices were tested with TE-polarized light by endfire coupling method with polarization maintaining single mode tapered lensed fibers. The transmission drop resonance Q and sensitivity to bulk refractive index changes are analyzed with water and isopropyl alcohol (IPA) ($n=1.377$) as the ambient medium. Figs. 2 (a)–(c) show experimental transmission spectra from W1 PCWs with coupled L3, L7 and L13 PC microcavities in water. In Figs. 2 (d)–(f), drop transmission of the resonance closest to the band edge, as in insets of Fig. 1(b), for L3, L7 and L13 PC microcavities in water and IPA are shown.

![Fig. 2.](image)

Fig. 3 shows resonance shifts $\Delta \lambda$ observed experimentally with the device in water versus in IPA. Fig. 3 also plots experimental $Q = \lambda / \Delta \lambda$ in water and IPA, at the center frequency, and the approximate resonance offset $\Delta \lambda$ from the W1 transmission band edge. It is observed from Fig. 3 that as the resonance moves closer to the band edge of the W1 PCW, Q and $\Delta \lambda$ increase. Since IPA does not absorb in the wavelength range studied, Q in IPA is higher than in water.

![Fig. 3.](image)

The increase in Q as the resonance approaches increasing group index near the band edge, is due to the combined effect of cold cavity Q, due to the inverse dependence of radiation loss on cavity size [4], and the diverging waveguide density of states [10] in the coupled cavity-waveguide system as the resonance moves deeper into the photonic band gap and increases the fraction of the electromagnetic field below the light line. Due to increase in mode volume, the resonance mode overlaps with more air holes along the borders of the cavity, leading to higher $\Delta \lambda$. By microcavity engineering, the highest Q=26760 was observed in a L13 PC microcavity in a SOI device with sensitivity $S \approx 52$nm/RIU (RIU=refractive index unit). S is calculated as $S=\Delta \lambda / \Delta n$ from values in water and IPA. Similar sensitivities were achieved in single-period resonators in SOI with $Q \approx 450$ [11]. The high Q in
our device improves measurement resolution for the detection of smaller changes in concentration.

The enhanced sensitivity and resolution is next applied to bio-sensing. Wafers were functionalized by treating with 1mg/mL poly-L-lysine in water, followed by washing 3 times in PBS. Wafers are next incubated in 1% glutaraldehyde in PBS for 5 minutes, ink-jet printed with target antibodies (Abs) and washed 3 times in PBS. 60µl of probe Ab was directly dispensed from a micro-pipette. The diameter of the dispensed spot on silicon is ~8mm.

Fig. 4. (Color online) (a) Resonance wavelength of L3 PC microcavity at different steps in the binding sequence. The resonant wavelength shift of interest is denoted by \(\Delta \lambda \). (b) Resonance shift of L3 (filled circles) and L7 PC microcavities (open circles) with probe antibody binding. Dashed line indicates the detection limit. Inset shows peak wavelength shift on binding. (inset) Normalized intensity data showing shift in L7 microcavity resonance from black to red curve upon addition of 0.1nM probe antibodies.

Instead of the final resonance shift as in Ref. [12], after each new concentration of probe Ab, the devices are washed in PBS and the resonance wavelength measured. While surface binding of target Ab can also be used to characterize device sensitivity, the resonance wavelength shift of interest for such hybrid assays is shown by \(\Delta \lambda \) in Fig. 4(a) which measures the probe antigen containing the predefined spectral response that is specifically bound to the target Ab. In Fig. 4(b), the magnitude of resonance shift as a function of rabbit anti-goat (molecular weight MW=150kDa) binding to goat Abs and Rat monoclonal Ab (MW=150kDa) binding to Human IL-10 Abs is plotted for L3 and L7 microcavities respectively. As in chemical sensing, higher Q ~7300 and larger sensitivity is observed for L7 than L3 PC microcavities. This represents the highest Q reported for bio-sensing in SOI PC devices. The spectral shift when 0.1nM of Rat monoclonal Ab is added is shown in the inset. We experimentally detected binding of 0.1nM or 15ng/ml of probe Ab with L7 devices. Since \(\Delta \lambda / \Delta n = 1.87 \times 10^{-4} \) at 295K for silicon, if we consider a maximum variation of 1K in temperature, the biomolecule sensing measurement limit of the shift \(\Delta \lambda \) is 0.01nm from the measured bulk sensitivity. The extrapolated concentration detection limit with L7 devices is thus ~20pM. In Fig. 4(a) inset, with a sensing area ~6.2µm², (integrating over an area where the E-field intensity is more than 50% of maximum value and including the internal surface area of holes) [13], dispersed probe Ab volume of 60µl over a diameter 8mm, and assuming uniform surface coverage, the estimated mass detection limit, without considering unbound Abs that are washed away, in L7 devices is ~10.6 atto-grams. The detection limit for surface density is ~22pg/mm² which compares quite favorably with detection limits of 1pg/mm² in SPR, on more than 4 orders of magnitude smaller area [3]. The detection limit also compares favorably with 60pg/mm² estimated in ref. [12]. Experimentally, we detected 110pg/mm² of bound antibody. Actual bound mass will be much lower since a significant fraction is washed away. It is also expected that L13 devices will show higher sensitivity to bound antibody due to the larger mode overlap with surrounding air holes. Further measurements are in progress.

In summary, we demonstrated a method for bio-sensing coupling high quality factor resonance and high sensitivity in SOI PC devices. The wave-guiding nature of our device enables denser chip-scale miniaturization than SPR microarrays, and the ability to probe multiple devices simultaneously for high throughput measurements.

The authors acknowledge the National Cancer Institute for supporting this work under the SBIR program (Contract # HHSN2612010000085C). Silicon nano-membrane device related work was sponsored by the AFOSR MURI (Contract # FA9550-08-1-0394).

References

References: