High-speed Energy-efficient Silicon-polymer Hybrid Integrated Slot Photonic Crystal Waveguide Modulator

Xingyu Zhang*, 1Amir Hosseini, 1Harish Subbaraman, 1Jingdong Luo, 1Alex A.K. Jen, 1Chi-ju Chung, 1Robert L. Nelson, and 1, 2Ray T. Chen*

1Microelectronics Research Center, Electrical and Computer Engineering Department, University of Texas at Austin, Austin, TX, 78758, USA
2Omega Optics, Inc., Austin, TX 78759, USA
3Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA
4Air Force Research Laboratory at Wright Patterson, Dayton, Ohio 45433, USA

*Corresponding author: zhang@utexas.edu, raychen@uts.cc.utexas.edu, Tel:512-471-4349, Fax: +1-512-471-8575

Abstract: We present a high-performance silicon-polymer hybrid integrated slot photonic crystal waveguide modulator. A record-high effective in-device r_{33} of 1230pm/V, $V_{z}xL$ of 0.282V×mm, 3-dB bandwidth of 15GHz, and energy consumption of 94.4fJ/bit are experimentally demonstrated.

OCIS codes: (230.4110) Modulators; (130.5296) Photonic crystal waveguides; (200.4650) Optical interconnects; (250.2080) Polymer active devices

The combination of silicon photonics and electro-optic (EO) polymers has enabled compact and high-performance hybrid integrated photonic devices, such as modulators [1], interconnects [2] and sensors [3]. Especially, slow-light silicon photonic crystal waveguides (PCWs) filled with EO polymer further reduce the device size and enhance the device performance by combining the best of these two worlds. In this paper, we demonstrate a silicon-polymer hybrid PCW modulator with $V_{z}xL$ of 0.282V×mm, corresponding to a record-high effective in-device r_{33} of 1230pm/V. Assisted by a backside gate, the measured 3-dB bandwidth of the modulator is 15GHz, and a modulation response up to 50GHz is observed. The energy consumption is 94.4fJ/bit at 10Gbit/s. In addition, an 8nm-wide low-dispersion optical spectrum range is also demonstrated, which is 10X better than other non-band-engineered PCWs and ring resonators.

![Image](image_url)

Fig. 1. (a) A 3D perspective of an EO polymer filled silicon slot PCW MZI modulator designed on a SOI substrate. (b) A tilted view of the lattice-shifted PCWs on one arm of the MZI. (c) Simulation result of engineered group index (red curve) in the slot PCW as a function of wavelength, showing 8nm low-dispersion slow-light optical spectrum. Also overlaid is the dispersive group index (blue curve) for non-band-engineered PCW for comparison. HD SL: high-dispersion slow-light; LD SL: low-dispersion slow-light; LD FL: low-dispersion fast-light. (d) Equivalent circuit of the MZI modulator in a push-pull configuration, with a constant gate voltage applied on the backside silicon substrate.

Our optical modulator is a symmetric Mach-Zehnder interferometer (MZI) on SOI substrate, with 300μm-long slot PCWs incorporated in both the arms, as shown in Fig. 1 (a). The slot PCWs are filled with EO polymer (EO coefficient, r_{33}=100pm/V). Low-loss mode converters and group index tapers are designed to efficiently coupled light into the slow-light PCWs [4]. Lattice-shifted PCWs are designed for a low-dispersion group index of 20.4 (±10%) over ~8nm optical spectrum range, as shown in Fig. 1 (c) [1]. As shown in Figs. 1 (a) and (b), the silicon PCW is selectively implanted doped to reduce the RC time delay. The modulator is driven by lumped electrodes in a push-pull configuration, as shown in Fig. 1 (d). A gate voltage (V_{gac}) is applied onto the backside silicon substrate to achieve an enhanced RF bandwidth and a reduced energy consumption [5].

The fabrication procedure starts with an SOI wafer. Silicon slot PCWs are patterned by e-beam lithography and reactive ion etching, and then selectively doped twice by photolithography and ion implantation. Gold electrodes are patterned by photolithography, e-beam evaporation, and lift-off. Next, EO polymer is spincoated to fill the slots and holes of PCWs. Finally, the EO polymer is poled at 150℃ under a constant electric field of 100V/μm in a push-pull configuration, as shown in Fig. 1 (c). The poling leakage current density is measured to be below 5.5A/m².

In the measurements, first, TE-polarized light (1550nm) is coupled into and out of the device through grating couplers, and RF signals are applied to the electrodes as shown in Fig. 1 (c). The modulator is biased at 3dB point and driven by a sinusoidal RF wave with V_{pp}=1.4V at 100KHz. The modulated optical signal is sent to a photodetector and displayed on an oscilloscope, as shown in Fig. 2 (a). From the over-modulation transfer function, the V_{g} of the modulator is measured to be 0.94V, corresponding to $V_{z}xL$=0.282V×mm. The slow-light enhanced effective in-device r_{33} is then calculated as...
r_{33}\text{--effective} = \frac{\lambda S_w}{n V_g \sigma L} = 1230 \text{pm/V}, \text{ where, } \lambda=1.55\mu\text{m}, \ S_w=320\text{nm}, \ n=1.63, \ L=300\mu\text{m}, \ \sigma=0.33 \ (\text{confinement factor in the slot}). \text{ Discounting the slow-light effect, the actual in-device } r_{33} \text{ is estimated to be 98pm/V. Furthermore, the same test is repeated over the duration of a month, and no severe degradation of device performance is observed.}

The RF bandwidth is measured in a high-frequency small signal modulation test. The measured EO response as a function of modulation frequency is shown in Fig. 2 (b), from which a 3-dB bandwidth of 11GHz is measured. Another test is performed using a sideband detection technique [5], and the measured optical transmission spectra of the modulator driven at different frequencies are overlaid in Fig. 2 (c). The phase modulation index (\eta) as a function of modulation frequency is then extracted [5] and shown by the red curve in Fig. 2 (d). Next, to further increase the RF bandwidth of the modulator, a positive gate voltage (V_{gate}) is applied onto the backside silicon substrate, as shown in Fig. 1 (c). As the V_{gate} is increased, the measured modulation index curves become flatter [Fig. 2 (d)], due to the increased electron accumulations [5] at the interface of silicon PCWs and BOX. Under the V_{gate} of 300V, the 3-dB bandwidth of the modulator is increased to 15GHz, and modulation response up to 50GHz is observed. And also, under V_{gate}=300V, the energy consumption is estimated to be W_{bit} = \frac{1}{4} C V_f^2 \times 2 = 94.4 fJ/bit at 10Gbit/s [6]. Next, the V_f is slightly tuned to be negative, and the measured modulation index decreases [Figs. 2 (d) and (e)] due to the depletion of electrons. As the magnitude of negative V_f further increases, modulation index starts to increase because an “inversion” state occurs.

Finally, to demonstrate the wide low-dispersion optical bandwidth, the wavelength of the laser input is tuned and the corresponding modulation index is measured. As shown in Fig. 2 (f), at each modulation frequency, the curve of measured modulation index looks flat from 1546nm to 1554nm, with a small variation of ±3.5%. This is because the n_g and slow-light enhancement has been engineered to be almost constant in this low-dispersion slow-light wavelength region [1]. This 8-nm wide optical bandwidth is 10X better than other non-band-engineered PCWs and ring resonators.

Reference

