Electro-optic depolarization switch on \(y \)-cut LiNbO\(_3\) proton-exchanged channel waveguides

Ray T. Chen

Physical Optics Corporation, 20660 Gramercy Place, Torrance, California 90501

(Received 7 February 1989; accepted for publication 18 April 1989)

We report the first electro-optic depolarization (TE guided mode to TM substrate modes) switch on \(y \)-cut LiNbO\(_3\) proton-exchanged channel waveguides operating at 632.8 nm. Tunability of the waveguide ordinary and extraordinary indices through thermal annealing provides an alternative way to reduce the drive voltage. An extinction ratio of 13.5 dB is achieved with 10 V applied voltage on a switch with 4 \(\mu \)m channel width and 3 mm electrode length. The measured capacitance of the electrode is 4.2 pF, which gives a theoretical modulation bandwidth of 1.5 GHz in a 50 \(\Omega \) lumped electrode structure.

We present here a novel electro-optic switch by utilizing the volume depolarization scattering centers associated with proton-exchanged (PE) \(y \)-cut LiNbO\(_3\) plates. As reported previously, planar PE waveguides made with diluted benzoic acid show a vast amount of depolarization scattering which shifts the transverse electric (TE) guided modes with index smaller than \(N_0 \), i.e., ordinary index of proton exchanged LiNbO\(_3\) guides, to transverse magnetic (TM) substrate modes. The same phenomenon has been consistently observed on \(y \)-cut LiNbO\(_3\) channel waveguides. The phase-matching condition for this scattering is

\[N_o = N_{eff} \cos(\gamma), \]

where \(N_{eff} \) is the effective index of guided mode, \(N_o \) is the ordinary index of the LiNbO\(_3\) plate, and \(\gamma \) is the walk-off angle of the TM substrate mode. All the guided modes with \(N_{eff} < N_o \) can satisfy this equation. Since the guided index can be perturbed by the thermal annealing process, \(^3\) the phase-matched depolarization scattering can be induced by proper heat treatment. Figure 1(a) shows the near field of a guided mode with \(N_{eff} = 2.284 \) after proton exchange (0.5 mol % lithium benzoate, 240 \(^\circ\)C for 30 h). The mode index is larger than \(N_o \). Therefore, no depolarization scattering is observed. After 210 min of thermal annealing at 400 \(^\circ\)C and 1500 cc/min oxygen flow, the guided-mode index changed from 2.284 to 2.260 which is smaller than \(N_o \). The original well guided TE light [Fig. 1(a)] in this condition is coherently scattered to the TM substrate modes as shown in Fig. 1(b). The measured throughput intensity is at least 20 dB less than the original.

The working principle of this electro-optic switch is to employ thermal annealing as a perturbation tool to shift the mode index of well guided mode to a value very close to the ordinary index of the guiding layer, i.e., very close to the phase-matching condition. Once this condition is achieved, external voltage is applied to change the guiding layer index such that the coherent depolarization scattering caused by the phase-matching condition [Eq. (1)] can be achieved. To form a PE waveguide with \(N_{eff} > N_o \), it has to be a multimode guide. Accordingly, the switch we present here is a multimode device operating in the TE\(_{11}\) mode. The device structure is shown in Fig. 2. The purpose of doing prism coupling is to measure the optimal \(N_{eff} \) value so that the proper heat treatment process is correctly determined. Thermal annealing changes both the ordinary and extraordinary indices of the guiding layer. Experimentally, optimal heat treatment is needed to shift the effective index of TE\(_{11}\) to the boundary of \(N_o \). The extraordinary and ordinary indices of a \(y \)-cut, \(x \)-propagating PE LiNbO\(_3\) crystal plate with external \(E \) field along the \(z \) direction are

\[N_x(E_z, T, t) = N_o - N_2^x r_{33} E_z / 2 - N_T, \]

and

\[N_x(E_y, T, t) = N_o - N_2^y r_{33} E_y / 2 - N_T, \]

respectively; where \(N_x \) and \(N_y \) are the extraordinary and ordinary indices of the guiding layer which are functions of the external \(E \) field, annealing time, and temperature; \(N_o \) and \(N_T \) are the intrinsic extraordinary and ordinary indices of the guiding layer without the influence of external perturbation; \(r_{33} \) is the related electro-optic coefficient; and \(N_T \) and \(N_T \) are the extraordinary and ordinary index changes due to the influence of thermal treatment. The optimal annealing condition is employed so that only the effective index of the lowest order mode, TE\(_{11}\), is just above \(N_o \).

Since the TE\(_{11}\)mode index is well above the cutoff condition, we assume that the effective index of TE\(_{11}\), i.e., \(N_{eff} \) in this condition, is equal to the surface index of the extraordinary index of the guiding layer, which is represented as

\[N_{eff} \approx N_o. \]

After some theoretical calculations, it is easy to show that the drive voltage needed to bring the TE\(_{11}\) well guided mode to the TM coherently scattered substrate mode is

\[V = \frac{2d\Delta}{N_2^x r_{33} - N_2^y r_{33}}, \]

FIG. 1. Near-field profiles of the TE\(_{11}\) guided mode: (a) before annealing, \(N_{eff} = 2.284 \); (b) after annealing, \(N_{eff} = 2.260 \).
where d is the separation of two electrode pads and

$$\Delta = (N_c - N_v) - (NT_z - NT_v). \quad (6)$$

The theoretical results of the drive voltage as a function of channel width is shown in Fig. 3 with Δ as a parameter. The channel width is equal to the electrode gap for all the devices fabricated. The ordinary index of the guiding layer is also a function of annealing process; therefore, both N_c and N_z migrate with the heat treatment. As a consequence, N_c and N_z are two variables that need to be considered. The measured effective indices of the TE_{11} mode of various samples are around 2.270 when the depolarization scattering is first observed. This result implies that $N_c \approx 2.270$, which is the value we used to plot Fig. 3. It is clear, based on Eq. (5), that the smaller Δ we have, the lower drive voltage we need to switch the well-guided mode into "walk-off" TM substrate modes. This condition, namely, smallness of Δ value, is carefully controlled through the optimal combination of proton-exchange time, temperature, and heat treatment condition.

Channel waveguides with various widths from 4 to 20 μm were made. The exchange time needed to generate the same TE_{11} mode index in different samples is a function of channel width. The annealing furnace is kept at 400 °C and 1500 cc/min dry oxygen flow. The effective index of the TE_{11} mode and the drive voltage versus throughput intensi-

Table I. Device parameters of depolarization switch F-6.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode length</td>
<td>3.0 mm</td>
</tr>
<tr>
<td>Exchange solution</td>
<td>0.5% lithium benzoate</td>
</tr>
<tr>
<td>Exchange time</td>
<td>30 h</td>
</tr>
<tr>
<td>Exchange temperature</td>
<td>235 °C</td>
</tr>
<tr>
<td>Annealing temperature</td>
<td>400 °C</td>
</tr>
<tr>
<td>Dry oxygen flow</td>
<td>1500 cc/min</td>
</tr>
<tr>
<td>Annealing time</td>
<td>1 h and 19 min</td>
</tr>
<tr>
<td>Electrode materials</td>
<td>Cr/AI</td>
</tr>
</tbody>
</table>

...were measured after every 5–20 min of heat treatment. The mode index decreases monotonically as the annealing time increases. When the TE_{11} mode index is far from the phase-matching value, the throughput intensity does not change even with a few hundred volts applying across the electrode pair. The change of the effective index provided by external E field is much smaller than that provided by annealing. Therefore, accurate control of the Δ value has to be achieved first through proper proton exchange and annealing process. Measurement of the effective indices and the throughput intensity versus applied voltage gives a standard criterion to determine whether the optimal annealing condition has been achieved. Among all the samples we made, the best result we achieved is sample F-6. The device parameter of this depolarization switch is shown in Table I. The drive voltage needed for this device is 10 V and the measured extinction ratio is 13.2 dB. The near-field profiles of this device with and without the external voltage are shown in Figs. 4(a) and 4(b), which correspond to the profiles at $V = 0$ and $V = 10$ V, respectively. In Fig. 4(b) most of the guided energy is scattered into TM substrate modes which are phase matched to the TE_{11} guided mode. Both N_c and N_z of the guiding layer are changed during the heat treatment. Consequently, optimal annealing condition to induce small Δ value and thus low drive voltage is not easy to obtain. Measured drive voltages for ~10 dB extinction ratio of different devices vary from 200 to 10 V with only a very small variation of annealing time (±5 min). As far as the control of the drive voltage is concerned, a thermally annealed cutoff modulator more easily achieves low drive voltage due to the fact that only the extraordinary index change is involved in the drive voltage formula. The measured capacitance of device F-6 is 4.2 pF. A modulation bandwidth of 1.5 GHz is theoretically feasible with a 50 Ω lumped electrode structure. As mentioned previously in this letter, the device we are presenting here is a multimode waveguide operating in the TE_{11}.

![Fig. 3. Drive voltage as function of channel width with d as a parameter.](image3)

![Fig. 4. Near-field profile of device F-6: (a) $V = 0$ V; (b) $V = 10$ V.](image4)
mode. The selective mode coupling from laser light to TE_{11} guided mode is achieved by choosing the proper prism coupling angle. End-fire coupling can also be used to input the laser light into the TE_{11} guided mode. The laser light TEM_{00} is an even function which can be strongly coupled only into the TE_{11} mode when the profiles and the center maximum of these two modes are well overlapped.6,7

In summary, we report here the first electro-optic depolarization switch on γ-cut, x-propagating PE LiNbO$_3$ channel waveguide. The phase-matching condition is caused by the proper combination of external drive voltage and annealing condition. A drive voltage as low as 10 V is achieved for 13.2 dB extinction ratio on a 4 μm channel waveguide device with 3 mm interaction length. The theoretical result shows that the drive voltage is linearly dependent on Δ, i.e., $(N_o - N_e) - (NT_o - NT_e)$. Since both ordinary and extraordinary indices change during the heat treatment process, the control of the drive voltage in this depolarization switch is harder than can be achieved by using a thermally annealed cutoff modulator on PE LiNbO$_3$ channel waveguide reported.5 The measured capacitance is 4.2 pF; therefore, 1.5 GHz modulation bandwidth is expected in a 50 Ω impedance-matched lumped electrode structure.

The author wishes to thank W. S. C. Chang of UCSD and C. S. Tsai of UCI for many helpful discussions.